Schattenblick →INFOPOOL →NATURWISSENSCHAFTEN → GEOWISSENSCHAFTEN

VULKANISMUS/042: Vom Ozean zum Feuerberg (idw)


Leibniz-Institut für Meereswissenschaften, Kiel - 20.12.2010

Vom Ozean zum Feuerberg


Wenn ozeanische Erdplatten an Kontinentalrändern ins Erdinnere abtauchen, nehmen sie große Mengen Wasser mit in die Tiefe. Dieses Wasser spielt eine zentrale Rolle im Plattenrandvulkanismus. Eine Arbeitsgruppe des Kieler Sonderforschungsbereichs 574 "Fluide und Volatile an Subduktionszonen" hat jetzt erstmals den Weg dieses Wasser in bis zu 120 Kilometer Tiefe nachverfolgen können. Die Forscherinnen liefern damit ein wichtiges Puzzlestück, um beispielsweise die höchst aktiven Vulkane rund um den Pazifik besser zu verstehen. Die entsprechende Studie erscheint in der Onlineausgabe der international renommierten Fachzeitschrift "Nature Geoscience".

Kaum ein Gegensatz ist größer als der zwischen Feuer und Wasser. Doch das scheint nur so. Wissenschaftler wissen: Viele Vulkane könnten ohne die Hilfe von Wasser kein Feuer spucken. Denn Wasser setzt im oberen Erdmantel die Schmelztemperatur des Gesteins herab. So kann es sich leichter verflüssigen und als Magma zur Erdoberfläche steigen.

Große Mengen Wasser gelangen dort ins Erdinnere, wo die Plattentektonik eine ozeanische Erdplatte unter eine kontinentale presst. So eine Region, Subduktionszone genannt, erstreckt sich beispielsweise vor der Westküste Mittel- und Südamerikas. Während die ozeanische Platte dort langsam in Richtung Erdinneres abtaucht, bilden sich wie bei einem gigantischen Lamellentor lange Spalten im Meeresboden. Hier dringen große Mengen Wasser ein, die im Gestein eingeschlossen und mit ihm zusammen in den Erdmantel transportiert werden. Der Druck und die hohen Temperaturen pressen es dort teilweise wieder aus der abtauchenden Platte heraus und das Wasser steigt in Richtung Erdoberfläche. Auf dem Weg sorgt es dafür, dass sich Magma bildet. Deshalb sind alle Subduktionszonen landseitig von regem Vulkanismus geprägt. "Bisher wussten wir, dass der Eintrag an Wasser in den Erdmantel durch Subduktionszonen groß ist und dass es im Zusammenhang mit den Vulkanen wieder freigesetzt wird. Aber der genaue Weg, den das Wasser in die Tiefe und wieder zur Oberfläche nimmt, konnte bislang nicht zusammenhängend gezeigt werden", erklärt die Geophysikerin Tamara Worzewski, die im Kieler Sonderforschungsbereich 574 "Fluide und Volatile in Subduktionszonen: Klima-Rückkopplungen und Auslösemechanismen von Naturkatastrophen" genau diese Prozesse untersucht. Jetzt konnte sie zusammen mit Dr. Marion Jegen und Prof. Dr. Heidrun Kopp vom Kieler Leibniz-Institut für Meereswissenschaften an der Christian-Albrechts-Universität (IFM-GEOMAR) sowie mit den Kollegen Dr. Heinrich Brasse von der Freien Universität Berlin und Dr. Waldo Taylor aus Costa Rica erstmals den gesamten Weg des Wassers vom Ozeanboden bis in 120 Kilometer Tiefe und wieder zurück an die Erdoberfläche anhand von elektromagnetischen Messergebnissen darstellen. Die Studie, die auch Teil von Worzewskis Doktorarbeit ist, erscheint in der aktuellen Ausgabe der renommierten Fachzeitschrift "Nature Geoscience".

Für ihre Untersuchungen nutzten die Forscherinnen und Forscher die Methode der Magnetotellurik. Hierbei messen spezielle Geräte Änderungen im elektromagnetischen Feld der Erde, die Aussagen über die Verteilung der Leitfähigkeit im Untergrund zulassen. "Wasserhaltiges Gestein besitzt eine hohe Leitfähigkeit und ist deshalb mit dieser Messmethode gut aufzuspüren", erklärt Worzewski. An Land hat sich die Methode für die Erforschung des Untergrundes vielfach bewährt. Am Meeresboden ist ihr Einsatz noch recht neu. "Das liegt einfach daran, dass Messungen in großen Meerestiefen schwierig sind", erklärt Dr. Marion Jegen, Co-Autorin der aktuellen Studie und Betreuerin von Worzewskis Doktorarbeit. Dr. Jegen leitet die entsprechende Arbeitsgruppe innerhalb des SFB 574 und hat die marine Magnetotellurik in Deutschland etabliert sowie für den Einsatz am Meeresboden weiterentwickelt. So konnte in den Jahren 2007 bis 2008 erstmals eine durchgehende Messkette über die Subduktionszone vor Costa Rica gelegt werden. Diese reichte von 200 Kilometern vor der Küste bis 160 Kilometer hinter die costa-ricanische Vulkankette. "Landseitig kamen Geräte der Freien Universität Berlin zum Einsatz, am Meeresboden lagen unsere neu entwickelten Messgeräte aus Kiel", berichtet Dr. Jegen. Anhand der so gewonnenen Daten konnten Tamara Worzewski und ihre Co-Autoren jetzt erstmals den Wasserkreislauf in Subduktionszonen visualisieren. "Es gibt sogar Hinweise dafür, dass eine lokale Wasseranreicherung in der Erdkruste global an allen Subduktionszonen auftritt", sagt die Autorin, "allerdings ist zur Klärung der genauen Ursachen noch weitere Forschung notwendig", fügt sie hinzu.

"Die Bedeutung, die der aktuellen Studie in der Wissenschaft beigemessen wird, zeigt sich schon an der Veröffentlichung in einer so angesehenen Zeitschrift wie 'Nature Geoscience'", betont Prof. Dr. Heidrun Kopp vom IFM-GEOMAR, ebenfalls Co-Autorin der Studie und zweite Betreuerin von Tamara Worzewskis Doktorarbeit. "Es ist schon etwas Besonderes, wenn eine Doktorandin als Erstautorin mit einer Studie in so einer Zeitschrift aufgenommen wird. Das zeigt, was für eine herausragende Arbeit Tamara bei der Auswertung geleistet hat."

Weg des Wassers an einer Subduktionszone - Grafik: © Worzewski

Der Weg des Wassers an einer Subduktionszone: Während die ozeanische Platte langsam in Richtung Erdinneres abtaucht, bilden sich wie bei einem gigantischen Lamellentor lange Spalten im Meeresboden. Hier dringen große Mengen Wasser ein, die im Gestein ein geschlossen und mit ihm zusammen in den Erdmantel transportiert werden.
Grafik: © Worzewski

Hintergrundinformationen:

Im Sonderforschungsbereich 574 "Fluide und Volatile in Subduktionszonen: Klima-Rückkopplungen und Auslösemechanismen von Naturkatastrophen" arbeiten Geologen, Vulkanologen, Geophysiker, Geochemiker, aber auch Meteorologen und Biologen der Kieler Christian-Albrechts-Universität und des Leibniz-Instituts für Meereswissenschaften (IFM-GEOMAR) an einem besseren Verständnis der Prozesse, die beim Abtauchen (Subduzieren) von ozeanischen Platten unter einen Kontinent entstehen.

Hauptuntersuchungsgebiete sind die Pazifikküste Mittelamerikas von Costa Rica bis Guatemala sowie die Subduktionszone vor Süd-Chile. Die Deutsche Forschungsgemeinschaft finanziert den SFB 574 mit insgesamt 6 Millionen Euro bis 2012.

Weitere Informationen unter:
http://dx.doi.org/10.1038/NGEO1041
Originalarbeit: Worzewski, T., M. Jegen, H. Kopp, H. Brasse and W.T. Castillo, 2010: Magnetotelluric image of the fluid cycle in the Costa Rican subduction zone. Nature Geocience

http://www.sfb574.ifm-geomar.de
Der Sonderforschungsbereich 574

Kontaktdaten zum Absender der Pressemitteilung unter:
http://idw-online.de/pages/de/institution818


*


Quelle:
Informationsdienst Wissenschaft e. V. - idw - Pressemitteilung
Leibniz-Institut für Meereswissenschaften, Kiel,
Andreas Villwock, 20.12.2010
WWW: http://idw-online.de
E-Mail: service@idw-online.de


veröffentlicht im Schattenblick zum 22. Dezember 2010