Schattenblick →INFOPOOL →NATURWISSENSCHAFTEN → PHYSIK

FORSCHUNG/761: Wissenschaftlern gelingt Zeitumkehr in der Magnetismusforschung (idw)


Technische Universität Kaiserslautern - 15.12.2010

Wissenschaftlern aus Kaiserslautern, Oakland und Oxford gelingt Zeitumkehr in der Magnetismusforschung

Ein Sprung nach vorn bei der Umkehr der Zeit


Wissenschaftlern um Prof. Burkard Hillebrands von der TU Kaiserslautern ist es mit Kolleginnen und Kollegen von der Oakland University (U.S.A.) und der University of Oxford (Großbritannien) gelungen, ein neues Verfahren zur Zeitumkehr magnetischer Wellen und Signale zu entwickeln.

Im digitalen Zeitalter ist das "Rückwärts abspielen" ein alltäglicher Vorgang: will man beispielsweise ein Musikstück rückwärts abspielen, überspielt man das Stück einfach auf einen Computer und die Software erledigt den Rest. Aber nicht nur akustische und visuelle Signale, sondern jede Art von digitaler Information können, wenn sie einmal aufgenommen wurden, genauso einfach rückwärts wie vorwärts abgespielt werden. Aber angenommen, dass dabei die Geschwindigkeit entscheidend wäre. Ist es möglich, ein Signal rückwärts zu spielen ohne es vorher aufzunehmen, zu verarbeiten und wieder abzuspielen? Diese Art der Zeitumkehr hätte große Auswirkungen auf die Verfahren der Signalverarbeitung, etwa in Kommunikationsnetzwerken. Bisher hatten alle Lösungsansätze gravierende Probleme in der Praxis: entweder waren sie auf sehr einfache Signale beschränkt oder hatten wegen der zugrundeliegenden physikalischen Prozesse einen sehr hohen Energieverbrauch.

Das Physiker-Team von der TU Kaiserslautern, der Oakland University (U.S.A.) und der University of Oxford (Großbritannien) hat einen neuartigen Mechanismus der Zeitumkehr auf Basis von künstlichen Kristallen entwickelt.

Natürliche Kristalle haben eine feste Atomstruktur. Dieses sogenannte Kristallgitter verleiht ihnen besondere Eigenschaften: dem Diamanten sein Funkeln oder dem Graphit seine Schreibfähigkeit. Etwa so wie das Webmuster eines Stoffes. Ein künstlicher Kristall hat ein von Ingenieuren entwickeltes Kristallgitter, dessen Eigenschaften von den verwendeten Materialien abhängen. Sie sind interessant, weil Signale (z.B. Licht, Mikrowellen oder Schallwellen), die durch diese künstlichen Kristalle geleitet werden, auf überraschende Weise verändert werden können.

Der von Hillebrands und seinen Kolleginnen und Kollegen entwickelte Mechanismus der Zeitumkehr beruht auf einem bestimmten Typ dynamischer künstlicher Kristalle. Das heißt, dass das Kristallgitter zeitabhängig verändert werden kann - quasi ein auf Knopfdruck verändertes Webmuster. Die Forscher konnten zeigen, dass man eine zeitumgekehrte Version des Signals erzeugen kann, indem man den Schalter umlegt, während sich das Signal durch den künstlichen Kristall bewegt.

Die Wissenschaftler haben den Zeitumkehr-Effekt an magnetischen Wellen, sogenannten Spinwellen gezeigt. Sie nutzten dazu die magnetischen Eigenschaften eines dynamischen künstlichen Kristalls aus. Der Effekt ist jedoch universell, und kann auf jegliche Wellen oder Signale übertragen werden. Die Ergebnisse haben nicht nur vielversprechende Auswirkungen auf die zukünftige Signal- und Datenverarbeitung, sondern ermöglichen auch aufregende Einblicke in die physikalischen Grundlagen von Signalen und Wellen. Die Ergebnisse (All-linear time reversal by a dynamic artificial crystal) wurden kürzlich von Andrii V. Chumak, Vasil S. Tiberkevich, Alexy D. Karenowska, Alexander A. Serga, John F. Gregg, Andrei N. Slavin und Burkard Hillebrands in der hochangesehenen Fachzeitschrift Nature Communications online veröffentlicht.

Zu finden unter:
www.nature.com/ncomms/journal/v1/n9/full/ncomms1142.html
http://tinyurl.com/2fbx6ts

Professor Hillebrands ist Mitglied des Landesforschungszentrums OPTIMAS und des Fachbereichs Physik der TU Kaiserslautern. Er ist in die Koordination einer Reihe nationaler und internationaler Forschungsverbünde eingebunden, darunter der SFB/TRR 49 "Condensed Matter Systems with Variable Many-Body Interactions", die Graduiertenschule der Exzellenz "Material Sciences in Mainz (MAINZ)" und der deutsch-japanischen Forschergruppe ASPIMATT.

Weitere Informationen unter:
http://www.uni-kl.de

Kontaktdaten zum Absender der Pressemitteilung unter:
http://idw-online.de/pages/de/institution124


*


Quelle:
Informationsdienst Wissenschaft e. V. - idw - Pressemitteilung
Technische Universität Kaiserslautern,
Dipl.-Volkswirt Thomas Jung, 15.12.2010
WWW: http://idw-online.de
E-Mail: service@idw-online.de


veröffentlicht im Schattenblick zum 17. Dezember 2010