Schattenblick →INFOPOOL →NATURWISSENSCHAFTEN → PHYSIK

MELDUNG/367: Quantenfluktuationen - Gebundene Atome trotz Abstoßung (idw)


Leibniz Universität Hannover - 05.08.2013

Quantenfluktuationen: Leibniz Universität und Harvard University präsentieren Ergebnisse

Gebundene Atome trotz Abstoßung



Eine Grundaussage der Chemie ist, dass Bindungen zwischen Atomen entstehen, wenn es energetisch günstiger ist, die Atome zusammenzubringen. Dafür ist eine anziehende Kraft zwischen den Atomen zwingend notwendig. Jetzt haben allerdings neue theoretische Berechnungen gezeigt, dass die Kombination aus einer abstoßenden Kraft und kontrollierten Quantenfluktuationen überraschenderweise ebenfalls zu einem gebundenen Zustand führen können, der exotische Eigenschaften aufweist.

Eine Grundaussage der Chemie ist, dass Bindungen zwischen Atomen entstehen, wenn es energetisch günstiger ist, die Atome zusammenzubringen. Dafür ist eine anziehende Kraft zwischen den Atomen zwingend notwendig. Jetzt haben allerdings neue theoretische Berechnungen gezeigt, dass die Kombination aus einer abstoßenden Kraft und kontrollierten Quantenfluktuationen überraschenderweise ebenfalls zu einem gebundenen Zustand führen können, der exotische Eigenschaften aufweist. Das Forscherteam bestehend aus Dr. Hendrik Weimer vom Institut für Theoretische Physik der Leibniz Universität Hannover und Dr. Mikhail Lemeshko von der Harvard University präsentiert dieses Ergebnis in der Fachzeitschrift Nature Communications [1].

Wie ist es möglich, dass Abstoßung und Quantenfluktuationen, beides zwei Effekte, die einer chemischen Bindung entgegenwirken, zu einem gebundenen Zustand führen können? Um dies zu verstehen, müssen die quantenmechanischen Eigenschaften der Atome berücksichtigt werden. "Wenn ein Quantensystem kontrollierten Quantenfluktuationen ausgesetzt wird, kann dies zu einem Interferenzeffekt führen, der die Atome in einem einzelnen Quantenzustand einfängt", erklärt Weimer. Die abstoßende Kraft stellt dann sicher, dass dieses Einfangen bei einem bestimmten Abstand stattfindet, wodurch die Bindungslänge festgelegt wird. Der neue Bindungstyp unterscheidet sich grundlegend von seinem chemischen Pendant. Zum Beispiel ist die Bindung sehr robust und kann nur schwerlich durch eine Anregung mit konstanter Energie aufgebrochen werden.

Weimer und Lemeshko nutzen eine der grundlegensten und frei verfügbaren Quellen für Quantenfluktuationen aus: Vakuumfluktuationen des elektromagnetischen Feldes. In der Vergangenheit hat das Ausnutzen dieser Fluktuationen zu bahnbrechenden Verbesserungen auf dem Gebiet der Laserkühlung geführt, was schließlich zu den Ergebnissen führte, die 1997 mit dem Nobelpreis für Physik ausgezeichnet wurden. Weimer vermutet, dass die ersten Anwendungen der neu entdeckten Bindung ebenfalls im Gebiet der Kühlung von atomaren Gasen sein könnten. "Wir sehen in unseren Berechnungen bereits einen Kühleffekt in Situationen, in denen konventionelle Laserkühlung nicht mehr funktioniert", sagt der Physiker.


[1] M. Lemeshko, H. Weimer:
Dissipative binding of atoms by non-conservative forces
Nature Communications (2013), available online at
http://dx.doi.org/10.1038/ncomms3230

Kontaktdaten zum Absender der Pressemitteilung unter:
http://idw-online.de/de/institution128

*

Quelle:
Informationsdienst Wissenschaft e. V. - idw - Pressemitteilung
Leibniz Universität Hannover, Mechtild Freiin v. Münchhausen, 05.08.2013
WWW: http://idw-online.de
E-Mail: service@idw-online.de


veröffentlicht im Schattenblick zum 7. August 2013