Schattenblick → INFOPOOL → NATURWISSENSCHAFTEN → TECHNIK


WERKSTOFFE/964: Wasserstoff aus Sonnenlicht - aber im Dunkeln (idw)


Gesellschaft Deutscher Chemiker e.V. - 14.12.2016

Wasserstoff aus Sonnenlicht - aber im Dunkeln


Graphitisches Kohlenstoffnitrid kann für die künstliche Photosynthese Elektronen erzeugen, speichern und zeitverzögert wieder freisetzen

Die Speicherung von Sonnenenergie und ihre bedarfsgerechte Freisetzung sind nach wie vor große Herausforderungen für die künstliche Photosynthese. Preiswertes graphitisches Kohlenstoffnitrid gilt derzeit als eines der vielversprechendsten neuen photokatalytischen Materialien. Wissenschaftler haben jetzt eine modifizierte Form entwickelt, welche durch Licht erzeugte Elektronen speichern kann, bis sie in einer "Dunkelreaktion" für die Produktion von Wasserstoff verbraucht werden. Über diesen biomimetischen Photosyntheseansatz berichten sie in der Zeitschrift Angewandte Chemie.

Die Natur teilt die Photosynthese auf in eine Licht-Reaktion, die Elektronen und "Löcher" durch Sonnenenergie erzeugt, und eine Dunkel-Reaktion, welche die Energiestoffe der Zelle generiert. Diese Stoffe transportieren und speichern die Energie. Indem dieser zweite, zeitverzögerte Prozess unabhängig vom Sonnenlicht abläuft, kann der Gesamtprozess den Tag-und-Nacht-Rhythmus ausgleichen. Für menschengemachte Systeme stellt die Nacht dagegen eine lästige Unterbrechung der lichtabhängigen Energieproduktion dar. Ein System, das den Bioprozess direkt nachahmt, müsste die lichterzeugten Elektronen speichern können, um sie später unabhängig von der Primärlichtquelle freisetzen zu können.

Solarzellen generieren die Elektronen entweder für den lokalen Verbrauch oder für die Einspeisung in das Stromnetz. Als Speichermedien für die elektrische Energie werden dagegen Batterien oder Kraftstoffe wie Wasserstoff oder Methan verwendet, die wiederum durch elektrochemische Reaktionen erzeugt wurden. Alternativ könnte man auch die natürliche Photosynthese effektiver nachahmen und nach einem Material suchen, das die photokatalytischen Elektronen gleich nach der Erzeugung speichern und nach Bedarf wieder abgeben kann. Bettina Lotsch vom Max-Planck-Institut für Festkörperforschung in Stuttgart und Kollegen aus der Schweiz und Großbritannien entwickelten dafür ein neuartiges Kohlenstoffnitrid-Polymer, dessen Vorstofe "Melon" für seine photokatalytischen und halbleitenden Eigenschaften bereits bekannt ist.

Das modifizierte Kohlenstoffnitrid ist ein gelblicher Festkörper, der durch Beleuchtung seine Farbe ändert. "Die Farbe dieses Polymers schlägt unter Einstrahlung von Licht und in der Gegenwart von bestimmten Elektronendonoren in Sauerstoff-freier Umgebung von gelb nach blau um", berichten die Wissenschaftler. Dieses "blaue Radikal" enthält die eingefangenen Elektronen. Wird das Licht ausgeschaltet und für die Wasserstoffentwicklung ein entsprechender Cokatalysator zugegeben, so wird das Polymer wieder gelb. Die gespeicherten Elektronen werden dabei für die katalytische Wasserstoffproduktion verwendet. Diese bemerkenswerten Ergebnisse zeigen, dass es durch das speziell entwickeltes Material möglich ist, den Licht einfangenden, Elektronen erzeugenden Teilprozess von der Weiterleitung und Freisetzung der Elektronen zu entkoppeln. Dies könnte den Prozess der Erzeugung speicherbarer solarer Brennstoffe erheblich vereinfachen, indem es ihn von der Periodizität der Sonneneinstrahlung entkoppelt.

Angewandte Chemie: Presseinfo 44/2016

Autor: Bettina V. Lotsch, Max Planck Institute for Solid State Research (Germany)
https://www.fkf.mpg.de/171964/Prof_Dr_Bettina_V_Lotsch

Link zum Originalbeitrag:
http://dx.doi.org/10.1002/ange.201608553

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany.

Weitere Informationen unter:
http://presse.angewandte.de

Kontaktdaten zum Absender der Pressemitteilung unter:
http://idw-online.de/de/institution122

*

Quelle:
Informationsdienst Wissenschaft e. V. - idw - Pressemitteilung
Gesellschaft Deutscher Chemiker e.V., Dr. Karin J. Schmitz, 14.12.2016
WWW: http://idw-online.de
E-Mail: service@idw-online.de


veröffentlicht im Schattenblick zum 16. Dezember 2016

Zur Tagesausgabe / Zum Seitenanfang